
1

An Evaluation of Scala as a host language for DSLs

Reinhard Pointner,

BSc (Hons) Computing

Supervisor: Bogdan Matuszewski

Second Reader: Chris Casey

27 June 10

Abstract

This paper discusses and evaluates the use of the Scala programming language in regard to

domain-specific language development. This paper will outline the various advantages DSLs

provide in general and explain the difficulties inherent in DSL development. In addition we

will examine different approaches to DSL development and their respective characteristics.

We will then evaluate the features of Scala DSL development. These features include easy

reuse of existing language infrastructure, composability of multiple DSLs and pluggable DSL

implementation due to the fact that DSLs are defined within the Scala language itself as well

as performance due to compilation. Support for domain-specific languages is then further

discussed by looking at Groovy in contrast to Scala including a brief explanation of how

Scala can be used as a foundation for an external DSL. We will then look at how Scala can be

used for the creation of a domain-specific language for human animation and some of the

benefits of this approach.

2

1 Introduction

1.1 Domain-Specific Languages

Mernik (2005) defines DSLs as languages that are designed and optimized for a specific

purpose or set of tasks, thereby offering substantial gains in expressiveness and ease of use in

comparison to general-purpose programming languages. The idea of domain-specific

languages is not new. DSLs for various tasks have been around since early ages of computing

(Mernik, 2005). One of the main differences between GPLs and DSLs is that the latter is not

necessarily executable by itself. It may merely be some kind of description language like

regular expressions for text patterns, make files for building software or simply HTML and

CSS for websites. Although there are many successful and widely used examples of DSLs,

standalone applications rarely make use of small special-purpose languages. Mernik (2005)

and Hofer, et al. (2008) agree that the primary reason for the small adoption of DSLs is

simply that the extreme amount of effort that is required to create a new language from

scratch almost always outweighs possible benefits.

1.2 Overview

This paper will introduce DSLs in general and evaluate Scala as a host language in particular.

The following section will outline on various approaches to DSL development. The third

section will evaluate the use of Scala in respect to certain set of desirable DSL development

features and move on to a direct comparison between Scala and Groovy. The use of Scala for

writing a DSL for human animation will be discussed in the fourth section.

2 Approaches to DSL development
Fowler (2009) generally distinguishes between internal and external DSLs. External DSLs are

usually written from scratch as part of an application that uses this DSL for interpreting

certain types of input. An internal DSL on the other hand is built upon or within an existing

language. The aim is to reuse existing language infrastructure like syntax checker, parser,

compiler and interpreter as far as possible.

Mernik (2005) points out however, that DSL development does not only require technical

expertise in language design but also domain expertise and that few people have both. Since

DSLs are typically designed to be used by non-programmers to accomplish a specific range of

tasks, a deep understanding and insight into that purpose is required when defining syntax and

semantics.

2.1 External DSLs

Mernik (2005) talks about language invention in this regard as external DSLs are typically

implemented from scratch. Language design can be arbitrary and there are virtually no

limitations which allows for syntax that is close to the notations used by domain experts

(Mernik, 2005). This requires defining a grammar, then a parser for converting the textual or

graphical input to some kind of data structure and finally an interpreter to evaluate the input

expression. Therefore the implementation will require a considerable amount of time, effort

and technical expertise in language design. There are many tools like parser generators that

3

help substantially, but language development will nevertheless remain quite complex. It is for

that reason that extensibility of the language is usually not the first priority. Mernik (2005)

highlights this as one of the main disadvantages of this approach and argues that domain-

specific languages are generally much more prone to language changes than general purpose

languages because the domain experts will usually request more and more features as they are

working with the language. In addition maintaining the language will proof to be difficult

especially for developers who are not familiar with the specific implementation.

2.2 Internal DSLs

Internal or embedded DSLs are typically built within an existing language. The DSL will be

able to reuse the complete tool chain of the host language. Therefore no grammar, parsers or

any other language development tools are required. The language is defined solely by using

language features of the host language which imposes certain limitations to the DSL syntax.

Mernik (2005) marks this as one of the main disadvantages and argues that most languages

don’t allow for arbitrary syntax extension. Naturally languages that provide syntactic

flexibility are more suitable for creating a DSL. One of the main advantages of internal DSL

development is that it does not require any kind of special expertise in language development.

Fowler (2009) suggests the term “fluent interface” in this regard, because internal DSLs are

fundamentally a form of API. This is also one of the reasons why internal DSL are much

easier to maintain and to extend because in essence developers only need to be familiar with

the host language to be able to improve upon the DSL.

Mernik (2005) however defines this type of DSL in more general terms when he talks about

language exploitation. When reusing an existing language the DSL can overcome limitations

of the host language by either extending the host language itself or by using some form of

pre-processor that converts DSL code to host language code before compilation. This

approach of adapting an existing language to make it more expressive will make language

development significantly more complicated when compared to the pure embedding approach

that solely uses existing language features.

3 Evaluation of Scala as a host language
In the previous section the merits of domain-specific languages have been explained and

general implementation approaches have been discussed. The idea of using Scala as a host

language puts this approach into the domain of internal DSL development and therefor most

of the previously mentioned advantages and disadvantages apply.

This paper focuses on Scala rather than any other language because Scala promises language

flexibility that is intended to allow developers to capture their respective problem domains

more naturally (Odersky, et al. 2006). The same kind of reasoning leads to domain-specific

languages.

Mernik (2005) argues that embedding suffers from limited user-definable syntax in languages

like Java and observes no trend towards more powerful languages. However Hofer, et al.

(2008) illustrates the opposite with Scala compellingly but points out that there are certain

syntactic constructs that cannot be modelled easily.

4

Hofer, et al. (2008) identifies the following set important DSL features:

 Reuse of Infrastructure

 Pluggable semantics

 Performance

 Composability

3.1.1 Reuse of Infrastructure

The approach of defining a DSL purely in Scala syntax immediately allows the language

developer to reuse the complete Scala API as a well as all the additional tools. This includes

syntax checker, compiler and maybe most notably IDE support. There is also debugging

support but since the debugger will work on the host language level rather than the DSL level

it is less useful (Hofer, et al. 2008). It is noteworthy however that debugging support is

generally not implemented at all in most DSLs because it is usually not considered worth the

effort.

3.1.2 Pluggable semantics

The idea of pluggable semantics is to decouple the DSL syntax from a single specific

interpretation and thereby allowing multiple possibly very different implementations of the

same language. Scala is perfectly suited for this purpose as this concept can be implemented

using straightforward polymorphism as Hofer, et al. (2008) illustrates. Essentially the DSL

syntax is defined by an abstract class definition and the concrete semantics are defined by the

respective implementations thereof. Those implementations themselves may then again be

extended and adapted by others. Where Mernik (2005) was not able to answer how to extend

implementations in a safe and modular manner, Hofer, et al. (2008) seems to have found a

simple solution with this approach.

3.1.3 Performance

Performance is generally not an issue for domain-specific languages. However it might be

noteworthy that any Scala DSL code is compiled to Java byte code, virtually eliminating

language related overhead.

3.1.4 Composability

Composability describes the concept of using multiple DSLs in the same code. This is

virtually impossible for external DSL implementations because it would require merging two

or more very different and possibly extensive codebases.

As far as Scala is concerned, DSLs are a merely a form of API. When implementing a new

DSL the developer can simply make use of existing lower-level DSLs. Multiple DSLs may

even work and interact on the same level as long as they agree on common interfaces and

types.

5

3.2 Scala vs Groovy

Scala is only one of many new languages targeting the JVM. Each one of them tries to solve

issues that are inherent in traditional programming languages. Scala and Groovy are among

the most prominent ones.

Scala is a statically-typed compiled language. Groovy on the other hand is a dynamically-

typed scripting language. Because of those features, it seems apparent that Groovy would be a

far better choice as a host language for both internal and external DSLs. It is easy to evaluate

Groovy expressions dynamically at runtime from within a Java application and languages

targeted at non-programmers usually don’t make use of type systems because it would

unnecessarily increase complexity. In fact, G. Laforge (2007), one of the core developers of

Groovy, argues that Groovy syntax is malleable and flexible which makes it the perfect

choice for creating DSLs. However Groovy first and foremost improves upon Java and adds

many features of popular scripting languages. The aim of Scala on the other hand is to create

a new language that is in itself extensible enough in order to allow developer to model their

respective domains easily and naturally in libraries and frameworks (Odersky, et al. 2006),

instead of providing a certain set of built-in features. Even though Scala is statically typed it

does not hinder DSL development significantly because of a sophisticated type inference

system which permits to omit actual type (Odersky, et al. 2006). This means that the type

does not have to be stated explicitly in most cases giving Scala many syntactic advantages

that are usually associated with dynamically typed languages. Since Scala is a compiled

language it stands to reason to question if it sensible at all to use Scala as a foundation for an

external DSL because user-defined code will need to be evaluated dynamically at runtime.

But this is actually only a minor issue because Scala provides API for dynamic compilation

and interpretation. However Scala is more complicated than Groovy in this regard, because it

is not primarily designed to be used for that purpose.

Even though Groovy seems more suitable to be used as a foundation for an external DSL

initially, Scala extensive support for growing the language and internal DSLs, which can be

exposed as external DSLs, may make it more worthwhile in the long run.

4 DSL for human animation
One aim of the project is to design and implement a simple user-friendly domain-specific

language for scripting a virtual 3D avatar. Z. Huang, et al. (2003) tackled a similar problem

when implementing STEP (Scripting Language for Embodied Agents) and chose to expose

the internal logic via a DSL to the user. However due to the simplicity of the language some

use-cases that would have been possible internally are not accessible via the external DSL.

A Scala DSL could help solve the dilemma of trying to simplify the input language and make

it user-friendly while allowing advanced and much more complicated code as well. Since

anything will be valid Scala code the user can choose to solely use the simplified DSL but

may also directly access any language constructs, classes or APIs that are available to the

programmer. Interestingly this concept is applicable vice versa. The developer may also

choose to use the DSL in internal code. Therefore more complex parts of the DSL

implementation could be defined in basic constructs of the very same DSL. The language

definition can also be considered as an independent software component and may be reused

for scripting any human-shaped body. However one of most significant reasons for using

Scala in any kind of project is simply that a lot can be achieved within a limited amount of

time.

6

5 Conclusion
The Scala language is DSL friendly by design. One of the major goals of Scala is to allow

developers to produce expressive and concise code as well as easy-to-use APIs in form of

internal DSLs. It is possible to implement DSLs in a modular manner that is impossible for

external DSLs. First and foremost all DSL code is valid Scala code. Therefore multiple DSLs

can be used in conjunction or on top of each other. In addition the DSL definition itself is a

form of class that may be extended allowing multiple implementations of the same DSL using

simple polymorphism.

As mentioned before, Scala is a compiled language and as such it is not primarily designed to

be used as the foundation of an external DSL. There are however approaches of using the

Scala compiler API to interpret new input dynamically at runtime.

Since everything is hosted completely within Scala, there is no actually language

development in the traditional sense involved when implementing the DSL, allowing for rapid

DSL development as well as straightforward maintenance and language extension.

6 References
C. Hofer, K. Ostermann, T. Rendel, A. Moors, 2008. Polymorphic Embedding of DSLs.

In: GPCE (Generative Programming and Component Engineering),

7
th

 international conference on Generative programming and component engineering.

Nashville, Tennesse, USA, 19-23 October 2008. ACM.

M. Mernik (2005). When and How to Develop Domain-Specific Languages.

ACM Computing Surveys. 37 (4), 316-344.

Martin Fowler, 2009. Domain Specific Languages (WORK-IN-PROGRESS) [online]

(Updated 30 Jun 2009) Available at: http://martinfowler.com/dslwip/index.html

[Accessed 10 November 2009]

M. Odersky, P. Altherr, V. Cremet, I. Dragos, G. Dubochet, B. Emir, S. McDirmid, S.

Micheloud, N. Mihaylov, M. Schinz, L. Spoon, E. Stenman, and M. Zenger (2006).

An Overview of the Scala Programming Language. 2nd ed. Lausanne: EFPL (École

Polytechnique Fédérale de Lausanne). p18.

G. Laforge and J. Wilson, 2007. Tutorial: Domain-Specific Languages in Groovy [online]

(Updated 7 March 2007) Available at: http://glaforge.free.fr/groovy/QCon-Tutorial-Groovy-

DSL-2-colour.pdf

[Accessed 15 November 2009]

Z. Huang, A. Eliëns, C. Visser. Implementation of a Scripting Language for VRML/X3D-

based Embodied Agents. In: Web3D

8
th

 international conference on 3D Web technology

Saint Malo, France, 09-12 March 2003. ACM.

http://martinfowler.com/dslwip/index.html
http://glaforge.free.fr/groovy/QCon-Tutorial-Groovy-DSL-2-colour.pdf
http://glaforge.free.fr/groovy/QCon-Tutorial-Groovy-DSL-2-colour.pdf

