
Diploma Project

Höhere Technische Bundeslehranstalt Leonding

Department of Software Engineering

Eclipse Live Class Diagram

by:

Reinhard Pointner

closing date:

03.06.2007

supervised and graded by:

Gerhard Gehrer

Contents
Acknowledgments...4

Abstract..5

Kurzbeschreibung in Deutsch..6

Introduction..7

Motivation...7

Environment..8

Task Definition..9

Conceptual Design.. 10

Eclipse Plug-in Development...11

About the Eclipse Platform...11

The eclipse plug-in framework..11

plugin.xml...12

Plug-in Activation...13

Interactions between the Eclipse Platform an the Plug-in...13

JDT...15

JavaModel..15

Java Elements..16

JavaUI...17

JavaCore, IElementChangedListener and IJavaElementDelta......................................18

Draw2d...19

Figures..19

GEF..20

Model-View-Controller...22

EditPartViewer..23

EditPartFactory...24

Implementation.. 25

Overview...25

Adding a new View to the Workbench...25

Using a graphical EditPartViewer in a ViewPart...26

Page 2 of 48

Extracting the Type Hierarchy from the JavaModel..27

Model-View-Controller...29

Model..29

Editparts..30

Figures..32

Using the icons and decorations of JDT...33

Listening to workbench selections...34

Listening to changes in the Java model...35

JavaModelListener..36

Updating the Diagram...36

EditPartRefreshJob..37

Changes of modifiers...38

Renaming of members..38

Adding and removing of Members...38

Adding and removing of Classes...38

Changing the Java model ...39

User Guide.. 40

Installation..40

Running Eclipse Live CLD..40

Tasks..40

Open...41

Extend..41

Rename...41

Delete...41

Visibility..41

Members of Binary Types...42

Currently Selected Project...42

Currently Selected Package..42

Export...42

Future Prospects...43

Conclusion.. 44

Sources...45

List of Abbreviations...46

Page 3 of 48

Acknowledgments

Acknowledgments

I would like to thank my supervisor Gerhard Gehrer for his support and advice

on how to approach various problems and difficulties I have come across and

of course for pressuring me to work hard.

I would also like to thank FabIT for giving me the idea to get involved in

eclipse plug-in development and the opportunity to do this as a diploma

project. In addition I would like to thank Christian Kastner, my FabIT contact,

for his thoughts on the matter and his support and for giving me a rather free

hand in realizing my ideas.

Finally I would like to thank my family and friends for their aid and support,

especially my sister for proofreading this paper.

Page 4 of 48

Abstract

Abstract

These days there are tons of UML Editors. They are designed as stand-alone

applications or as plug-ins for existing Integrated Development Environments

(IDE). Although these UML Editors usually provide import and export

functionality to generate diagrams from source code and vice versa, diagrams

and source code will drift apart in time, due to changes in the code design

(adding of new classes, methods, fields, etc.). Design and code will diverge,

ultimately making the original designs obsolete. Developers tend to live with

this problem because the only solution would be permanent Round-Tripping,

which is very troublesome and time-consuming.

The ultimate solution can be achieved by synchronizing the various views

(source code, class diagram, flowchart, etc.) of the program with each other.

Changes in one view will result in changes in all the other affected views. As a

result, the developer can choose freely on which view he or she will work on,

while not having to worry about inconsistencies.

Page 5 of 48

Kurzbeschreibung in Deutsch

Kurzbeschreibung in Deutsch

Mittlerweile gibt es eine Vielzahl an UML Klassendiagramm-Editoren –

einerseits als stand-alone Applikationen, andererseits direkt in eine IDE

integriert. Obwohl diese in der Regel Import- und Exportfunktionen für die

Generierung von Quellcode oder Diagrammen bieten, unterscheiden sich nach

einiger Zeit Quellcode und Diagramm erheblich. Grund dafür ist, dass oft

während der Implementierung noch Änderungen am Design des Codes (neue

Klassen, Methoden, Felder, usw.) vorgenommen werden. Dadurch entfernt sich

die geplante Realisierung (ursprüngliches Klassendiagramm) immer mehr von

der tatsächlichen Umsetzung (Code). Dieses Problem könnte man durch ein

ständiges Round-Tripping vermeiden. Diese Methode ist allerdings gerade bei

vielen kleinen Änderungen sehr störend und zeitaufwendig.

Eine optimale Lösung wäre es, wenn die verschiedenen Sichten (Quellcode,

Klassendiagramm, Ablaufdiagramm, ...) auf ein Programm miteinander

synchronisiert wären. Änderungen an einer Sicht sollen sich vollautomatisch

auch auf die anderen Sichten auswirken. Das bedeutet, dass sich der

Entwickler die freie Wahl hat, über welche Sicht er den Programmcode

bearbeiten will.

Eclipse Live CLD nimmt sich diese Idee zum Vorbild und stellt ein

Klassendiagramm bereit, dass sich jedes mal entsprechend aktualisiert, wenn

der Sourcecode geändert wird. Zusätzlich werden Element wie Klassen und

Member die im Diagramm gelöscht werden auch im Quellcode gelöscht.

Page 6 of 48

Introduction

Introduction

Motivation

Most of the UML Editors nowadays are able to reverse engineer a diagram from

the source code as well as generating the source code for a certain diagram.

The Problem is, you cannot edit the sources and the diagram all at once.

First you have to draw your class diagram, then generate the source files.

While implementing the classes you most likely will find the previously

designed class model insufficient and so you will begin to alter the classes to fit

Page 7 of 48

Figure 1: Round-Tripping

Introduction

your needs. The class diagram will become more and more outdated and

eventually useless. To prevent this from happening the developer would have

to keep source and diagram synchronized manually.

The circle in the figure above labeled “Model” is the abstract form of your

program. It is neither source code nor diagram or any other kind of view. It's

passed around between source code and the diagram. Ideally there's only one

model which means source code and diagram describe the same model.

To keep source code and diagram synchronized at all times, the developer has

to bother with forward/reverse engineering constantly to keep source code and

the diagram consistent.

This is time-consuming and troublesome process, and so, in reality, the

diagram is drawn once and updated never (or at least not frequently).

Environment

Although there are many UML Editors, both stand-alone Applications like

ArgoUML, as well as plug-ins for IDEs like AmaterasUML for eclipse. None of

them can stay consistent with the corresponding source-code automatically.

One Exception is the eclipse plug-in green which able to keep imported classes

and the corresponding source file synchronized but you still have to import all

the classes you need into the diagram and you also have to layout them

yourself.

Page 8 of 48

Task Definition

Task Definition

The goal is to implement an eclipse view that displays a live class diagram.

“live” means that changes in the source code will immediately result in

changes in the diagram and vice versa.

A new method for instance can either be added in the source code (thereby

also manipulating the class diagram) or in the class diagram (resulting in

corresponding updates of the source code).

Jumping from an diagram element to the according source code fragment must

be possible to allow for code browsing. Refactoring abilities like renaming or

deleting of elements like types, members and fields is also a vital feature.

You should also be able to export the diagram as Portable Network Graphics

(PNG) or Scalable Vector Graphics (SVG). All the SVG elements, that

correspond to a Java element should link to the documentation of these Java

elements.

Page 9 of 48

Conceptual Design

Conceptual Design

Eclipse, or rather the Java Development Tools (JDT), use an object-oriented

tree-like representation of all the projects, packages, classes, members and

other Java elements, the so called Java model. Whenever the user changes the

source code, the Java model will be updated, and vice versa. By changing the

Java model you can change the actual sources.

Page 10 of 48

Figure 2: Synchronization between source code and diagram

Conceptual Design

You could say, your source code is merely a view of this model. A UML class

diagram could simply be another view of the same model.

To provide a consistent view the diagram has to listen to changes in the model

and has to be updated accordingly and changes to the diagram must be

conveyed to the model.

Eclipse Plug-in Development

About the Eclipse Platform

Eclipse is a platform that has been designed for application development. By

default, the platform itself does not provide a great deal of end user

functionality. The platform is intended to be extended by plug-ins and provides

a well-designed and an extreme extensible plug-in model. The Eclipse platform

can be extended with virtually any kind of functionality (support for different

programming languages, code completion, graphical editors, refactoring,

integrated media players, ...).

The eclipse plug-in framework

Tools you develop can plug into the eclipse workbench using well defined

hooks called extension points.

The platform itself is built in layers of plug-ins, each one hooking to the

Page 11 of 48

Eclipse Plug-in Development

extension points of lower-level plug-ins, and in turn defining their own

extension points for further customization.

You can also define dependencies for your plug-in to other plug-ins allowing

you to access existing functionality.

Each plug-in contains one plug-in runtime class. This class must extend from

Plugin (or a specialization thereof like AbstractUIPlugin) and is loaded on plug-

in activation by the eclipse platform. These plug-in runtime classes are usually

Singletons.

plugin.xml

All the information the eclipse platform needs to load an hook up a plug-in is

stored in a file called plugin.xml. Every plug-in has its own folder or jar-Archive

containing the plugin.xml file, all the class files need for execution and other

plug-in specific files.

<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.2"?>
<plugin>
 <extension
 point="org.eclipse.ui.editors">
 <editor
 name="MyFile Editor"
 extensions="myfile"
 class="myfile.MyFileEditor"
 id="myfile.MyFileEditor">
 </editor>
 </extension>
</plugin>

Code Snippet 1: plugin.xml for a simple editor plug-in

Page 12 of 48

Eclipse Plug-in Development

Plug-in Activation

Plug-ins are loaded on a as-needed basis. On startup, only the plugin.xml is

read, so the platform knows how the plug-in is intended to be integrated into

the workbench. The editor in the code example above for instance is only

loaded and activated when the user opens a file of the type “myfile”.

If a plug-in needs to be activated on startup, the org.eclipse.ui.startup

extension must be defined.

<extension
point="org.eclipse.ui.startup">

</extension>

Code Snippet 2: Plug-in activation on startup

Interactions between the Eclipse Platform an the Plug-in

When the eclipse platform is launched, the plugin.xml files of all the plug-ins in

the plugins folder are read but no Java class is actually loaded. With the

information from the plugin.xml the platform knows exactly when to load which

part of the plug-in (a plug-in can implement multiple extension points and can

exist of multiple views, editors, etc.) and what kind preparations have to be

made.

For example, if a new view is defined, then the workbench has to provide an

additional menu item in the “Show View” dialog before any Java class of your

plug-in is loaded, so you can activate this view.

Page 13 of 48

Eclipse Plug-in Development

The plug-in runtime class will only be loaded when any part of the plug-in is

loaded. It will always be loaded before any other class from the plug-in and will

only be loaded once. After that the part that has been activated will be

integrated into the workbench.

All extension points require certain types or interfaces that must be extended

from or implemented. For example, to implement the editor extension point,

the class specified in the plugin.xml must extend from EditorPart. This way the

platform can easily communicate with any kind of editor since they all have the

same superclass and the defined set of (probably overridden) methods of

EditorPart.

Page 14 of 48

Figure 3: Interactions between the Eclipse Platform an the Plug-in

Eclipse Plug-in Development

JDT

The Java Development Tools (JDT) are a set of plug-ins that add Java specific

behavior to the eclipse platform and contribute Java specific views, editors,

and actions to the workbench. JDT itself is can be used as the foundation for

plug-ins that need do one or more of the following things:

● Manipulate Java resources, such as creating projects, generating and

refactoring of Java source code.

● Detect problems in code.

● Direct the Java IDE, for example, opening editors and launching wizards

● Add new functions and extensions to the Java IDE itself.

JavaModel

The JavaModel can be used to get any Java element within the workspace

(projects, classes, methods, fields, etc.) and provides methods for performing

copy, move, rename, and delete operations on them.

IWorkspace workspace = ResourcesPlugin.getWorkspace();
IJavaModel javamodel = JavaCore.create(workspace.getRoot());

Code Snippet 3: Getting a reference to the Java model root element

Page 15 of 48

Eclipse Plug-in Development

You can use classes defined in other plug-ins like any kind of API but you have

to add these plug-ins to your dependencies first. The class ResourcesPlugin for

example is in the plug-in org.eclipse.core.resources, whereas JavaCore is in

org.eclipse.jdt.core.

Java Elements

The Java model is a set of hierarchically ordered Java elements. One well-

known view, displaying most of these Java elements, is the Package View in

eclipse.

Figure 4: Java Model Overview

Page 16 of 48

Eclipse Plug-in Development

Table of Java Elements

Element Description

IJavaModel
Represents the root Java element, corresponding
to the workspace. The parent of all Java projects.

IJavaProject Represents a Java project in the workspace.

IPackageFragmentRoot
Represents a set of packages, and maps them to
an underlying resource which is either a folder,
JAR, or ZIP file.

IPackageFragment Represents an entire package.

ICompilationUnit Represents a Java source (.java) file.

IType
Represents either a source type inside a
compilation unit, or a binary type inside a class
file.

IField Represents a field inside a type.

IMethod Represents a method or constructor inside a type.

JavaUI

This class provides static methods for:

● creating selection dialogs for various kinds of Java elements.

● opening a Java editor

//element implements IJavaElement
IEditorPart editor = JavaUI.openInEditor(element);
JavaUI.revealInEditor(editor, element);

Code Snippet 4: Opening an editor and revealing a Java element

Page 17 of 48

Eclipse Plug-in Development

In order to use the class JavaUI you have to add the plug-in org.eclipse.jdt.ui

to your dependencies.

JavaCore, IElementChangedListener and IJavaElementDelta

You can listen to changes in the Java Model by simply adding a new

IElementChangeListener to the JavaCore. On any kind of change in the Java

model your listener will be called and given a ElementChangedEvent containing

a IJavaElementDelta.

A IJavaElementDelta describes changes of an Java element between two

discrete points in time. Given a delta, you can access the element that has

changed, and any children or parents of that element that are affected as well.

JavaCore.addElementChangedListener(new IElementChangedListener() {
public void elementChanged(ElementChangedEvent evt) {

IJavaElementDelta delta = evt.getDelta();
//do something with delta

}
});

Code Snippet 5: Listening to the Java model

Page 18 of 48

Eclipse Plug-in Development

Draw2d

The Draw2d plug-in provides the toolkit for displaying graphics and is based on

the Standard Widget Toolkit (SWT). It focuses on efficient painting and layout

of figures. In comparison to Graphics2D you operate on a much higher lever of

abstraction. Among the main features of Draw2d are automatic connection

routing and scaling.

Figures

Figures are the building blocks of Draw2d and can be nested. Draw2d provides

a lot of figure types like geometrical shapes, polylines, labels or scroll-panes

and you can use LayoutManagers the layout these figures.

The Draw2d user interface is composed of a tree of figures. Each figure can

paint itself and tell its children to do the same. Figures cannot paint outside of

their parents bounds.

Page 19 of 48

Figure 5: Tree of figures and its graphical representation

Eclipse Plug-in Development

Draw2d itself is not bound to eclipse or GEF and can also be used in stand-

alone SWT applications as well.

GEF

The Graphical Editing Framework (GEF) allows you to create graphical editors

for eclipse. Draw2d is used for displaying graphics. GEF provides you with

every thing you need to integrate your editor into the eclipse workbench. You

can also take the advantage of the many common operations (like drag and

drop, snapping, aligning, etc.) or extend them for your specific needs.

GEF uses a Model-View-Controller architecture which already provides most of

the functionality you need to translates user actions to changes in the model

and/or view.

Page 20 of 48

Eclipse Plug-in Development

Figure 6: GEF Overview

The Graphical Editing Framework provides the link between the model and the

view. It also provides input handlers, such as tools and actions, that turn

events into requests.

The model is changed via commands. Redo and undo support is already built

into the framework and works out of the box, provided the implementation of

your commands support these operations.

Page 21 of 48

Eclipse Plug-in Development

Model-View-Controller

Model

The model is some kind of data. Although any type of model can be used with

GEF, a tree-like model is often chosen because the controller design of GEF

requires a tree-like structure of all controller elements.

The model elements must have some sort of notification mechanism, so the

controller can listen to changes in the model.

View (Figures)

The view is anything that is visible to the user. Both Figures and TreeItems can

be used as view elements.

Controller (EditParts)

There is usually one controller for each visual model element. The controller is

called an EditPart. Each EditPart is responsible for creating and maintaining its

views according to its model. EditParts are the link between the model and the

view and are organized in a tree structure. Each EditPart has a parent EditPart

and can have multiple child EditParts.

EditParts are also responsible for editing. EditParts contain helpers called

EditPolicies, which handle most of the editing tasks and visual feedbacks and

can be reused throughout your application.

Page 22 of 48

Eclipse Plug-in Development

EditPartViewer

An EditPartViewer is an SWT Control (like lists, trees, tables, etc.) that

manages a set of EditParts and displays their respective view. There are two

types of viewers provided in GEF. A graphical viewer hosts figures, mostly used

to display the diagram, while a tree viewer displays a tree of TreeItems,

usually used to display the outline of a graphical view.

Each EditPartViewer contains one RootEditPart, an EditPart which has no model

associated with it. In addition every EditPartViewer is responsible for

maintaining a list of selected EditParts.

Page 23 of 48

Figure 7: Outline of an EditPartViewer

Eclipse Plug-in Development

EditPartFactory

In the process of building or refreshing the view, GEF needs to create the the

proper EditParts to represent some model elements. This process is

encapsulated in an EditPartFactory.

Whenever GEF needs an EditPart for a model element, it asks the

EditPartFactory to create one. You have to implement an EditPartFactory

yourself for each EditPartViewer.

public class ShapesEditPartFactory implements EditPartFactory {

public EditPart createEditPart(EditPart context, Object modelElement) {
EditPart part = null;

if (modelElement instanceof ShapesDiagram) {
part = new DiagramEditPart();

}
else if (modelElement instanceof Rectangle) {

part = new RectangleEditPart();
}
else if (modelElement instanceof Circle) {

part = new CircleEditPart();
} else {

throw new RuntimeException("Can't create part for " +
"model element " + modelElement);

}

part.setModel(modelElement);
return part;

}

Code Snippet 6: EditPartFactory

Page 24 of 48

Implementation

Implementation

Overview

This chapter describes all the major challenges I came across and how to solve

them.

For this project Eclipse 3.2 and GEF 3.2 were used as a foundation. You also

have to keep in mind, that eclipse uses SWT and JFace as a User Interface

Toolkit and not AWT/Swing.

Adding a new View to the Workbench

After creating a plug-in project you only have the plugin.xml and the plug-in

runtime class. In order to add a new view to your eclipse environment you

have to implement the org.eclipse.ui.views extension point.

First you have to create a new class that extends from ViewPart and than you

have to create a new entry in your plugin.xml.

<view
name="Live Class Diagram"
icon="hierarchy.gif"
category="Live Class Diagram"
class="livecld.HierarchyViewPart"
id="livecld.HierarchyViewPart">

</view>

Code Snippet 7: Segment from plugin.xml for a view extension

Page 25 of 48

Implementation

Using a graphical EditPartViewer in a ViewPart

GEF can be used in editors and views alike. But the main difference is, that, for

GEF based editors there is already a class called GraphicalEditor which serves

as a quick starting point for anyone who is new to GEF.

It will create an Editor containing a GraphicalViewer (subclass of

EditPartViewer) which will be hooked up with an EditDomain automatically.

When using GEF inside a view you have to put all these parts together

yourself. Adding a GraphicalViewer to your view and showing diagrams is

simple, provided you already have your model and an according

EditPartFactory creating your controller and view parts.

In order to react to user actions you have to hook up the viewer with an

EditDomain which is responsible for translation user action to GEF requests.

@Override
public void createPartControl(Composite parent) {

this.editDomain = new ViewPartEditDomain(this);
this.viewer = new ScrollingGraphicalViewer()
this.viewer.createControl(parent);

this.viewer.setRootEditPart(new ScalableFreeformRootEditPart());
this.viewer.setEditPartFactory(new ClassDiagrammPartFactory());
this.viewer.setContents(this.modelRoot);

this.editDomain.addViewer(this.viewer);
...

}

Code Snippet 8: Setting up a GraphicalViewer within a ViewPart

Page 26 of 48

Implementation

Extracting the Type Hierarchy from the JavaModel

Eclipse already provides a way of getting the type hierarchy for given type.

Such a type hierarchy provides navigation between a type and its resolved

supertypes and subtypes.

//type implements IType
ITypeHierarchy hier = type.newSupertypeHierarchy(new NullProgressMonitor());
IType superTypes[] = hier.getAllSuperclasses(type);

Code Snippet 9: Getting the all super types for a given type

If you want to display the complete type hierarchy of all your classes

(excluding API classes), you can't just start at Object and then resolve all

subtypes because you would end up not only with your own classes but also

with the thousands of classes of the Java API.

In order to only display the type hierarchy of your classes you have to extract

all the classes you need from the Java Model.

Page 27 of 48

Implementation

//javaProject implements IJavaProject
for (IJavaProject javaProject : javaModel.getJavaProjects()) {
 for (IPackageFragmentRoot pkgRt : javaProject.getPackageFragmentRoots()) {
 //do not include APIs (jars)
 if (!pkgRt.isArchive()) {
 for (IJavaElement element : pkgRt.getChildren()) {
 IPackageFragment pkg = (IPackageFragment) element;
 for (ICompilationUnit unit : pkg.getCompilationUnits()) {
 for (IType type : unit.getAllTypes()) {
 //do something with type
 }
 }
 }
 }
 }
}

Code Snippet 10: Getting all non-API types from the Java model

After you have collected all the desired types you have to resolve the
supertype hierarchy for each of these types and finally combine your results to
one type hierarchy.

Figure 8: Joining type hierarchies

Page 28 of 48

Implementation

Model-View-Controller

Model

The root element of the model is the DiagrammRootModel. It contains one

HierarchyNodeModel, the highest level node in the type hierarchy (Object).

Each HierarchyNodeModel has a list of lower-level HierarchyNodeModels

thereby creating a HierarchyNodeModel tree. Each HierarchyNodeModel also

contains a IType which represents the actual type from the Java model.

Page 29 of 48

Figure 9: Model aggregation diagram

Implementation

The following object diagram shows the model of the hierarchy shown in

Figure 7.

Editparts

The structure is very similar to that of the model. The EditPart tree is created

directly from the model using the ClassDiagrammPartFactory.

Simulating multiple content panes

Each EditPart has one content pane which is part of its view. When child

EditParts are added, their visual representation is added to the content pane of

their parent EditPart.

Page 30 of 48

Figure 10: Model object diagram

Implementation

But in this case, each HierarchyNodeEditPart is in need of 2 content panes.

One content pane for its child HierarchyNodeEditParts and one for its child

TypeEditPart.

This problem is solved by adding two EditParts that have no real model. These

two EditParts will be added to the content pane of the HierarchyNodeEditPart.

One will contain for the TypeEditPart and the other one will contain for the

lower-level HierarchyNodeEditParts.

For this to work, the automatic EditPart generation using the EditPartFactory

has to be overridden.

private Object dummyTypeModel = new Object();
private Object dummyChildrenModel = new Object();

@Override
protected EditPart createChild(Object model) {

HierarchyCompartmentEditPart part =
new HierarchyCompartmentEditPart();

List compartmentChildren = null;

if (model == dummyTypeModel) {
compartmentChildren = new ArrayList(1);
compartmentChildren.add(getCastedModel().getType());

} else if (model == dummyChildrenModel) {
compartmentChildren = getCastedModel().getChildren();

}

part.setCompartmentModelChildren(compartmentChildren);
part.setModel(model);
return part;

}

Code Snippet 11: Simulating multiple content panes in a AbstractGraphicalEditPart

Page 31 of 48

Implementation

Figures

The figures are created and added to the appropriate layers by the EditParts.

The figures representing the view of EditParts and the connections between

them are added to a separate layers. The figure below shows not only the

figures representing the Java Model but also the figures that are used for

layouting purposes and are normally not visible.

Page 32 of 48

Figure 11: Hierarchy layout using nested figures

Implementation

Using the icons and decorations of JDT

The JDT provides you with icons for all sorts of Java elements as well as

decorations for indicating visibility, modifiers or warnings and so on.

JavaUI.getSharedImages().getImageDescriptor(ISharedImages.IMG_OBJS_CLASS);

Code Snippet 12: Getting the Java class icon

new JavaElementImageDescriptor(imageDescriptor,
JavaElementImageDescriptor.STATIC, SIZE);

Code Snippet 13: Getting an icon with static decoration

Java Element Images

Icon Name Description
ISharedImages.IMG_OBJS_CLASS public class

IsharedImages.IMG_OBJS_INNER_CLASS_PRIVATE protected inner class

ISharedImages.IMG_OBJS_INNER_CLASS_PROTECTED protected inner class

IsharedImages.IMG_OBJS_INNER_CLASS_PUBLIC public inner class

IsharedImages.IMG_OBJS_INNER_CLASS_DEFAULT default inner class

IsharedImages.IMG_OBJS_INTERFACE public interface

ISharedImages.IMG_OBJS_INNER_INTERFACE_PRIVATE private inner interface

ISharedImages.IMG_OBJS_INNER_INTERFACE_PROTECTED protected inner interface

ISharedImages.IMG_OBJS_INNER_INTERFACE_PUBLIC public inner interface

Page 33 of 48

Implementation

IsharedImages.IMG_OBJS_INNER_INTERFACE_DEFAULT default inner interface

IsharedImages.IMG_OBJS_ENUM public enum

IsharedImages.IMG_OBJS_ENUM_PRIVATE private enum

ISharedImages.IMG_OBJS_ENUM_PROTECTED protected enum

ISharedImages.IMG_OBJS_ENUM_DEFAULT default enum

ISharedImages.IMG_OBJS_PRIVATE private method

IsharedImages.IMG_OBJS_PROTECTED protected method

ISharedImages.IMG_OBJS_PUBLIC public method

ISharedImages.IMG_OBJS_DEFAULT default method

ISharedImages.IMG_FIELD_PRIVATE private field

ISharedImages.IMG_FIELD_PROTECTED protected field

IsharedImages.IMG_FIELD_PUBLIC public field

ISharedImages.IMG_FIELD_DEFAULT default field

Listening to workbench selections

Each workbench window has its own selection service. The service keeps track

of the selection and propagates selection changes to all registered listeners.

When a Java element has been selected, the selection listener will be called

and given IStructuredSelection containing all selected elements. If a

compilation unit was selected in the package view, the selection would contain

the corresponding ICompilationUnit Java model element.

Page 34 of 48

Implementation

viewPart.getSite().getWorkbenchWindow().getSelectionService()
.addSelectionListener(selectionListener);

Code Snippet 14: Registering a selection listener

Listening to changes in the Java model

Although it is very easy to add a listener to the JavaCore, it is not as trivial to

extract useful information from the ElementChangedEvents and corresponding

IJavaElementDelta tree. The delta will not only contain the changed element,

but also all the parent Java models of the changed Java element because from

there perspective on of their children has changed. A delta can contain many

different types of changes all at once.

Page 35 of 48

Figure 12: Selection Service overview

Implementation

JavaModelListener

The JavaModelListener is a singleton that adds its own

IElementChangedListener to the JavaCore. It traverses the IJavaElementDelta

tree and propagates new ElementChangedEvents with current delta to

registered listener if they are interested in the Java element of the current

delta. The idea behind this is to simplify listening to changes of specific Java

elements.

Updating the Diagram

EditParts provide a refresh() method that updates the view and child EditParts.

This usually works because in almost all GEF applications refresh() is called

from a user interface thread, but in this case refresh() is called within some

kind of Java model listener, because when the Java model changes all

IElementChangedListeners are called by the JavaReconciliationThread which

has no access to the user interface and therefore refresh() has no effects.

Page 36 of 48

Implementation

EditPartRefreshJob

To ensure refresh() is called from the user interface thread a new eclipse Job

extending from UIJob is necessary.

public class EditPartRefreshJob extends UIJob {
private EditPart refreshRootPart = null;
private boolean refreshChildren = false;

public EditPartRefreshJob(EditPart editPart) {
this(editPart, false);

}

public EditPartRefreshJob(EditPart editPart, boolean refreshChildren)
{

super(Display.getDefault(), "Refresh Diagram");

this.refreshRootPart = editPart;
this.refreshChildren = refreshChildren;

//set high priority
this.setPriority(INTERACTIVE);

}

@Override
public IStatus runInUIThread(IProgressMonitor monitor) {

if (refreshRootPart == null)
return Status.CANCEL_STATUS;

refreshRootPart.refresh();

if (refreshChildren)
refreshChildren(refreshRootPart);

return Status.OK_STATUS;
}

private void refreshChildren(EditPart part) {
for (Object child : part.getChildren()) {

EditPart childPart = (EditPart) child;
childPart.refresh();

refreshChildren(childPart);
}

}
}

Code Snippet 15: EditPartRefreshJob

Page 37 of 48

Implementation

Changes of modifiers

If a modifier of a type, a field or a method is changed (removal of a static

modifier, changes in visibility, etc.) a new EditPartRefreshJob refreshing the

corresponding EditPart is scheduled. When a modifier is changed, only the icon

or the label text has to be changed.

Renaming of members

The Java Model doesn't really support renaming of Java elements. Instead of

renaming a element from A to B, A is deleted and B is added.

Adding and removing of Members

Whenever the model of a FieldEditPart oder a MethodEditPart is deleted, it will

schedule a new EditPartRefreshJob refreshing the higher level TypeEditPart,

which will in turn, refresh its children and thereby add/remove the

FieldEditParts and MethodEditParts that do not have a model anymore.

Therefore many different types of changes in fields and methods can be

updated all at once.

Adding and removing of Classes

Due to the nested layout and the tree of HierarchyNodeModels, you can only

add a class to the hierarchy or remove a class from the hierarchy by rebuilding

the whole hierarchy from scratch.

Page 38 of 48

Implementation

Changing the Java model

When the user changes certain Java elements using the actions provided in the

context menu like Rename and Delete. The corresponding EditPart for this

model element is not notified directly.

Instead the Java model listeners are notified by the subsequent changes in the

Java model. It is of no consequence whether the changes are initiated by the

user or by a plug-in. The JavaModelListener will notify all affected EditParts

that need to update their visuals.

In principal, the controller will first change the element, then the Java model

will automatically update the source code accordingly and due to the

subsequent Java model change events, the controller will update its visuals.

//element implements ISourceManipulation (ICompilationUnit, IMember, etc.)
element.delete(false, new NullProgressMonitor());

Code Snippet 16: Deleting a Java element

Page 39 of 48

User Guide

User Guide

Installation

Copy the Live CLD jar or the Live CLD plug-in folder into the /plugins folder in
your eclipse installation.

Running Eclipse Live CLD

After installing the plug-in, start or restart eclipse and

activate the Live CLD View (Window -> Show View

-> Other...). Now the Live CLD view will appear in your

workbench.

You just have to click on a project, package,

compilation unit or some other Java element and

an according class diagram will appear.

Tasks

By default, the project filter is activated, that means, that the Live CLD view

will always show you the type hierarchy of the currently selected project. Click

on another project an the type hierarchy will update accordingly.

When selecting an element in the package view or in the outline view that is

also shown in the Live CLD view, the view will try to scroll to this element.

Page 40 of 48

User Guide

Open

Open will open the editor containing

the corresponding element and then

select the element in this editor.

Extend

Extend will open a new class dialog,

the super type will be set to the

clicked class an the location an

containing package will also be set,

according to the super type.

Rename

Rename will open a rename dialog for the selected element.

Delete

You can delete types/fields/methods directly via the diagram. If the type is the

primary type of a compilation unit, this compilation unit will be deleted.

Visibility

By changing the diagram visibility, you can choose which visibility you want to

concentrate on. For example, if protected is selected only

classes/methods/fields will be shown, that have a equal or higher visibility

compared to protected (default and public), all private classes/methods/fields

will be hidden.

Page 41 of 48

User Guide

Members of Binary Types

By default fields and methods of API classes are hidden but you can change

this setting, if you want to see all the methods and fields of these API classes.

Currently Selected Project

This filter will always show you a class diagram of the project of the last

selected Java element.

Currently Selected Package

This filter will always show you a class diagram of the package of the last

selected Java element. When a project is selected, this filter will work exactly

like the project filter.

Export

You can export the current diagram as JPEG oder BMP.

When trying to export very big images you might get an

OutOfMemoryException. You can solve this problem by increasing the the

maximum memory for this virtual machine (change the -Xmx256m argument

in eclipse.ini to -Xmx1024m or higher and restart eclipse).

Page 42 of 48

Future Prospects

Future Prospects

Although the main features of Live CLD have been implemented, there is still

much room for improvement. For example you could also indicate errors and

warnings in the diagram.

As for the basic idea of a dynamically changing UML diagram, there are many

possibilities. On of my ideas in early development was displaying a flow chart

of the currently selected method that will update according to any changes in

the source code of this method. This could be done using the Abstract Syntax

Tree (AST) API also included in JDT.

I have also been offered an internship at Fabasoft for this summer and I have

been asked to further develop my plug-in and combine the advantages of a

live class diagram with the advantages of a traditional class diagram.

Page 43 of 48

Conclusion

Conclusion

Writing your first plug-in is actually rather simple because eclipse already

provides wizards and templates you can use as a quick starting point. Creating

a view with a text field inside, for example, is a matter of minutes.

But when I started to delve into GEF I was overwhelmed with its complexity at

first. Although there are many tutorials, it takes many hours to get a basic

understanding of how GEF works and how all its parts fit together. I had

many problems setting up the initial Live CLD view because I did not have a

profound enough understanding of GEF and its components.

In retrospect I have to say GEF is very well designed and displaying elaborate,

interactive and feature-rich diagrams is in fact rather easy in comparison to

the complexity of this task.

JDT also posed a problem because much of the functionality I needed was not

addressed in the JDT developer guide and there are very few tutorials and

articles on the more sophisticated subjects. I often had to resort the the source

code of JDT to find out how certain tasks were handled there.

Personally I liked working with JDT and GEF because of the high level

abstraction, at least for as long as everything worked as I expected it to work.

But when there is a problem it can get frustrating very quickly because if you

do not understand the underlying resources it is nearly impossible to find the

source of the problem and solve it.

Page 44 of 48

Sources

Sources

[1] http://help.eclipse.org/help32/index.jsp , 6. Mai 2007

[2] http://www.eclipse.org/articles , 19. Mai 2007

[3] http://www.eclipse.org/articles/Article-WorkbenchSelections/article.html , 19. Mai 2007

[4] http://www.eclipse.org/articles/Article-GEF-diagram-editor/shape.html , 19. Mai 2007

[5] http://eclipsewiki.editme.com/GefDescription , 12. Mai

[6] http://wiki.eclipse.org/index.php/GEF_Description , 12. Mai

Page 45 of 48

http://help.eclipse.org/help32/index.jsp
http://wiki.eclipse.org/index.php/GEF_Description
http://wiki.eclipse.org/index.php/GEF_Description
http://wiki.eclipse.org/index.php/GEF_Description
http://eclipsewiki.editme.com/GefDescription
http://eclipsewiki.editme.com/GefDescription
http://eclipsewiki.editme.com/GefDescription
http://www.eclipse.org/articles/Article-GEF-diagram-editor/shape.html
http://www.eclipse.org/articles/Article-GEF-diagram-editor/shape.html
http://www.eclipse.org/articles/Article-GEF-diagram-editor/shape.html
http://www.eclipse.org/articles/Article-WorkbenchSelections/article.html
http://www.eclipse.org/articles/Article-WorkbenchSelections/article.html
http://www.eclipse.org/articles/Article-WorkbenchSelections/article.html
http://www.eclipse.org/articles/Article-WorkbenchSelections/article.html
http://www.eclipse.org/articles/Article-WorkbenchSelections/article.html
http://www.eclipse.org/articles/Article-WorkbenchSelections/article.html
http://help.eclipse.org/help32/index.jsp
http://help.eclipse.org/help32/index.jsp

List of Abbreviations

List of Abbreviations

Abbreviation Description

IDE
Integrated Development Environment
Software that helps software developers in
developing software.

UML
Unified Modeling Language
Describes a set of diagrams that visualize certain
aspects of a program.

JDT
Java Development Tools
A set of plug-ins that add Java specific behavior to
the eclipse platform.

GEF
Graphical Editing Framework
Framework that simplifies the creation of extensive
graphical editors for eclipse.

AWT / Swing Abstract Window Toolkit / Swing
Standard Java GUI Toolkit maintained by Sun.

SWT
Standard Widget Toolkit
Alternative GUI Toolkit to AWT / Swing maintained
by the Eclipse Foundation.

SVG Scalable Vector Graphics
XML-based file format for vector graphics

PNG Portable Network Graphics
File format for raster graphics

Page 46 of 48

List of Abbreviations

Figures

Figure 1: Round-Tripping..7

Figure 2: Synchronization between source code and diagram...10

Figure 3: Interactions between the Eclipse Platform an the Plug-in..................................... 14

Figure 4: Java Model Overview...16

Figure 5: Tree of figures and its graphical representation.. 19

Figure 6: GEF Overview...21

Figure 7: Outline of an EditPartViewer...23

Figure 8: Joining type hierarchies...28

Figure 9: Model aggregation diagram..29

Figure 10: Model object diagram..30

Figure 11: Hierarchy layout using nested figures..32

Figure 12: Selection Service overview...35

Page 47 of 48

List of Abbreviations

Code Snippets

Code Snippet 1: plugin.xml for a simple editor plug-in..12

Code Snippet 2: Plug-in activation on startup...13

Code Snippet 3: Getting a reference to the Java model root element.................................. 15

Code Snippet 4: Opening an editor and revealing a Java element.......................................17

Code Snippet 5: Listening to the Java model..18

Code Snippet 6: EditPartFactory...24

Code Snippet 7: Segment from plugin.xml for a view extension... 25

Code Snippet 8: Setting up a GraphicalViewer within a ViewPart.. 26

Code Snippet 9: Getting the all super types for a given type..27

Code Snippet 10: Getting all non-API types from the Java model..28

Code Snippet 11: Simulating multiple content panes in a AbstractGraphicalEditPart..............31

Code Snippet 12: Getting the Java class icon...33

Code Snippet 13: Getting an icon with static decoration..33

Code Snippet 14: Registering a selection listener..35

Code Snippet 15: EditPartRefreshJob..37

Code Snippet 16: Deleting a Java element...39

Page 48 of 48

	Acknowledgments
	Abstract
	Kurzbeschreibung in Deutsch
	Introduction
	Motivation
	Environment

	Task Definition
	Conceptual Design
	Eclipse Plug-in Development
	About the Eclipse Platform
	The eclipse plug-in framework
	plugin.xml
	Plug-in Activation
	Interactions between the Eclipse Platform an the Plug-in

	JDT
	JavaModel
	Java Elements
	Table of Java Elements

	JavaUI
	JavaCore, IElementChangedListener and IJavaElementDelta

	Draw2d
	Figures

	GEF
	Model-View-Controller
	Model
	View (Figures)
	Controller (EditParts)

	EditPartViewer
	EditPartFactory

	Implementation
	Overview
	Adding a new View to the Workbench
	Using a graphical EditPartViewer in a ViewPart
	Extracting the Type Hierarchy from the JavaModel
	Model-View-Controller
	Model
	Editparts
	Simulating multiple content panes

	Figures

	Using the icons and decorations of JDT
	Java Element Images

	Listening to workbench selections
	Listening to changes in the Java model
	JavaModelListener

	Updating the Diagram
	EditPartRefreshJob
	Changes of modifiers
	Renaming of members
	Adding and removing of Members
	Adding and removing of Classes

	Changing the Java model

	User Guide
	Installation
	Running Eclipse Live CLD
	Tasks
	Open
	Extend
	Rename
	Delete
	Visibility
	Members of Binary Types
	Currently Selected Project
	Currently Selected Package
	Export

	Future Prospects
	Conclusion
	Sources
	List of Abbreviations

