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Face Detection using Rectangle Features 

Implementation 

Sampling 
Like all face detection algorithms, the Viola-Jones approach works by finding common patterns and 

structures in from some kind of sample data. For a face detector that works reliably with unseen real-

world input data, the positive and negative samples used for training have to represent the infinite 

diversity of this real-world input data as best as possible. Variance normalization is used to equalize all 

sample images in terms of brightness and contrast so the detector doesn’t have to take different 

lightening conditions into account. 

The final application supports extracting 24x24 sample faces used for training in various ways: 

 Faces from the CMU image dataset using the provided face location table 

 Faces from any image using the OpenCV face detector  

 Faces from a single image containing a mosaic of faces (for training data that was exported from 

matlab) 

 

Rectangle Features 
Features are used to separate between faces and non-faces. Each feature is defined by two sets of 

rectangles. The value of a feature for a specific sample image is calculating by using the difference 

between the sums all the pixels that are selected by the two rectangle sets respectively. 

Features are generated by using a given feature template, the feature of the given type without 

translation at the smallest possible scale. All the other features of this type are then computed by scaling 

the template across the x- and y-axis to get all scales of the feature that fit within the sample size. The 

final set of features is generated by translating each scaled feature to all possible locations within the 

sample size. 
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Integral Image 

Calculating the pixel sum of a rectangle is a quite costly operation especially given the fact that during 

detection this process would have to be repeated multiple times for each feature for every single sub-

window. Instead of using the original image to calculate the pixel sum for every rectangle, an integral 

image is first calculated from the original image and then used for all following computations. Each pixel 

in the integral image corresponds to the pixel sum between the origin and the pixel in the original image. 

Therefore the pixel sum of a rectangle can be calculated with just a few array references when using the 

integral image. The integral image itself can easily be computed in a single pass. 

Generating the integral image: 
for (int y = 0; y < h; y++) { 

 for (int x = 0; x < w; x++) { 

  double pixel = image[x][y]; 

  if (x > 0) pixel += integral[x - 1][y - 0]; 

  if (y > 0) pixel += integral[x - 0][y - 1]; 

  if (x > 0 && y > 0) pixel -= integral[x - 1][y - 1]; 

  integral[x][y] = pixel; 

 } 

} 

 
Calculating the pixel sum of an area using the integral image: 
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When using an integral image, the amount of computation required to calculate the pixel sum of any 

area regardless of size is constant. Therefore when using more complex features, the feature value can 

be calculated more efficiently by subtracting the pixel sum of one of the rectangle sets from the total 

area sum of the rectangle. 

 

 

AdaBoost Training 
The iterative boosting consists of three major steps. First the weights are normalized. Then the feature 

that yields the least weighted minimum error is chosen. Afterwards the weights are updated with 

respect to the chosen classifier and its error. Every weight corresponds to a sample image from the 

training data and how well it can be classified by all the weak classifiers that have been chosen before. 

Therefore the weights that correspond to sample images that are classified correctly by the chosen 

classifier are reduced with respect to its error. Due to the updated weights, in the next iteration of 

boosting, the next classifier will focus on sample images that have been misclassified by previous 

classifiers. 

 

Thresholding and Weak Classifiers 

From the large set of features we have to select those that are useful for face detection. Therefore each 

feature will be tested against the entire training data. The feature value for each sample image will be 

calculated in order to find the threshold that best separates faces and non-faces. The threshold that 

yields the lowest weighted error can easily be determined using a simple brute-force approach. Each 

threshold has a numeric value as well as a polarity that indicates whether the faces are on the positive or 

on the negative side of the threshold value.  

Even the best threshold for a specific feature will still yield a significant error, and is therefore called 

“weak” classifier. The error rates of usable weak classifiers are typically between 15% and 45%. 

The thresholding required for each weak classifier has to be repeated in every iteration of the boosting 

process because the weights change with every iteration which will take a lot of time even on a modern 

processor. In order to speed up the training, the feature values for all samples however remain constant 

and can therefore be calculated and stored beforehand. The feature value for every single feature for 

every single sample image has to be stored which will easily take up many gigabytes of space so these 

values have to be stored on-disk. 

- = 2x - + 
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Strong Classifier 

A useful “strong” classifier with a minimal error rate can be constructed by combining multiple weak 

classifiers. But a strong classifier is not just a sequence of weak classifiers but also their corresponding 

weighted error rates that were determined during training. The error rate of a classifier is factored in 

during the evaluation of a sub-window as it represents how trust-worthy a specific classifier is. 

The final application uses a single strong classifier. The solution suggested by Viola-Jones suggests a 

cascade of manually fine-tuned strong classifiers. This solution trades in a small amount of accuracy and 

quite a lot of development time for a large gain in performance. However adequate performance can be 

achieved by a single strong classifier. Suppose we have a 200 features strong classifier, if there is positive 

response from the first couple of weak classifiers then the final result is likely to be negative, therefore 

we can abort early, without computing all feature values. 

The strong classifier can easily be tweaked to minimize false positives (at the cost of some false 

negatives) by adjusting the minimum ratio between positive and negative responses of the weak 

classifiers that is required for a positive detection. 

 

Face Detector 
The final strong classifier can only classify images of a certain scale and a certain size, so we need to slide 

a sub-window through the image and classify every single sub-window. We will then scale down the 

image and run sub-window classification again. Slightly scaling down the image further and further 

allows us to detect faces of any scale. The bounds of the detection rectangle on the scaled image have to 

be adjusted of course so they match the original image and not the scaled image.  

Because the training data is not perfectly aligned and scaled, the detector will be tolerant to alignment 

and scale to a certain degree. Consequently the detector will come up with multiple detections at slightly 

different positions for a single face on the image. To solve this problem we just have to collect the 

detections that overlap with each other significantly and then use average location/size as the final 

detection rectangle. 

Since normalized sample data is used for training, every sub-window of the real-world input has to be 

normalized as well. Before training the image is normalized by dividing all pixel values by the standard 

deviation. This approach is however not feasible during detection. Since each sub-window has a different 

standard deviation, preprocessing of each and every sub-window using data from the original image 

would be required thus reducing the benefits of using an integral image to nothing. 

Instead the normalization can be achieved by in a highly efficient manner by using two integral images. 

The first one is used to calculate the area sum of the input image and the second one for the squared 

area sum. Using these two integral images, the standard deviation of a sub-window can quickly be 

computed using the equation below. 
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Equation for Standard Deviation (): 

𝜎2 =
1

𝑛
 𝑥2 −𝑚2 

The mean (𝑚) can easily be calculated from the first integral image and the squared pixel sum ( 𝑥2) can 

be calculated from the second integral image. 

Post-normalization of the area sum is the same as pre-normalization of all pixel values: 
1

𝜎
 𝑥 = 

𝑥

𝜎
 

During detection normalization is achieved by simply dividing the feature value (sum of pixels) by the 

standard deviation (
1

𝜎
 𝑥), instead doing it for every single pixel value ( 

𝑥

𝜎
). 

 

Evaluation 
The use of rectangular features turns out to be very efficient and reasonable accurate. However training 

the detector requires huge amounts of processing. Due to the lack of hardware, the final detector uses 

only 23 features, which were selected in approximately 5 hours of training on a 2 GHz dual-core 

processor. Nevertheless this detector is able to identify up to 100% of the faces correctly depending on 

the image that is used for testing. On average however the detector will only detect half of the faces 

because the classification threshold is chosen very conservatively in order to eliminate false positives. 

  

The left image (voyager2.gif) illustrates how the detector works on simple images. All faces can be 

classified correctly because they all look at the camera upfront so there is no rotation and there are no 

obstructions like hair or glasses. There are no false positives because the background is very plain and 

has very little texture that could be confused with face. 
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The right image (madaboutyou.gif) however shows how the detector has trouble with correctly 

classifying rotated faces. The pipe to the left of the image is misclassified as face multiple times. This can 

easily be understood by looking the features that are used in the final classifier. First of all there is 

usually a clear change in brightness between the face and the background to the left and to the right of 

the face. And secondly there are unusually dark areas slightly above the center of the sub-window 

representing the eyes. The parts of the pipe that have been misclassified as faces clearly exhibit those 

features. 

 

 

This last image (class57.gif) shows that the current implementation is already quite promising, even 

though it’s not perfect. Increasing accuracy and eliminating false positives is only a matter of using more 

features and fine-tuning. 


